Metric Rigidity Theorems On Hermitian Locally Symmetric Manifolds

Proceedings of the National Academy of Sciences of the United States of America

Several Complex Variables and Complex Geometry

In this volume, the geometry of spherical space form groups is studied.
Where To Download Metric Rigidity Theorems On Hermitian Locally Symmetric Manifolds

using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pinc and Spinc equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theory groups. There is a deep relationship between topology and analysis with differential geometry serving as the bridge. This book is intended to serve as an introduction to this subject for people from different research backgrounds. This book is intended as a research monograph for people who are not experts in all the areas discussed. It is written for topologists wishing to understand some of the analytic details and for analysts wishing to understand some of the topological ideas. It is also intended as an introduction to the field for graduate students.

Contents: Partial Differential Operators
K-Theory and Cohomology
Equivariant Bordism
Auxiliary Material
The Additive Structure of M(U(BG))
Readership: Mathematicians.
Keywords: P-Sylow Subgroup; ?-Invariant; Spherical Space Form; Spherical Space Form Group; K-Theory; Equivariant Bordism; Eta Invariant; Selfadjoint Elliptic Differential Operators; Pseudo-Differential Operators; Heat Equation; Zeta Functions; Mellin Transform; Operators of Dirac Type on Real Projective Space; Equivariant Eta Invariant; Dolbeaut Complex; Dedekind Sums; Todd Genus; Metacyclic Spherical Space Form Groups; Spin Bundle; Flatness of Iterated Jet Bundles; Characteristic Numbers; Mackey Functor; Bordism Spectral Sequence; Hattory-Stong Theorem; Connective K-Theory; Formal Group Laws; Atiyah-Singer Index Theorem; Clifford Algebras

Proceedings of the International Congress of Mathematicians

This book gives a presentation of topics in Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject. The authors have aimed at presenting technical material in a clear and detailed manner. In this volume, geometric aspects of the theory have been emphasized. The book presents the theory of Ricci solitons, Kahler-Ricci flow, compactness theorems, Perelman's entropy monotonicity and no local collapsing, Perelman's reduced distance function and applications to ancient solutions, and a primer of 3-manifold topology. Various technical aspects of Ricci flow have been explained in a clear and detailed manner. The authors have tried to make some advanced material accessible to graduate students and nonexperts. The book gives a rigorous introduction to Perelman's work and explains technical aspects of Ricci flow useful for singularity analysis. Throughout, there are appropriate references so that the reader may further pursue the statements and proofs of the various results.

Local and Global Methods in Algebraic Geometry
Essentials of integral geometry in a homogenous space are presented and the focus is on the basic results and applications. This book provides the readers with new findings, some being published for the first time and serves as an excellent graduate text. Request Inspection Copy

Geometric Complex Analysis

Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of pseudoeffective codimension one distributions. Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geometry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study.

Complex Analysis and Geometry

The central theme of this reference book is the metric geometry of complex analysis in several variables. Bridging a gap in the current literature, the text focuses on the fine behavior of the Kobayashi metric of complex manifolds and its relationships to dynamical systems, hyperbolicity in the sense of Gromov and operator theory, all very active areas of research. The modern points of view expressed in these notes, collected here for the first time, will be of interest to academics working in the fields of several complex variables and metric geometry. The different topics are treated coherently and include expository presentations of the relevant tools, techniques and objects, which will be particularly useful for graduate and PhD students specializing in the area.

The Geometry of Spherical Space Form Groups
The fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field. The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. Mok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.

The Hodge Theory of Projective Manifolds

Selected Papers of Wilhelm P. A. Klingenberg

By using Bochner technique of harmonic maps, Siu [15, 16] proved a strong rigidity theorem concerning the complex structure of compact quotients of irreducible bounded symmetric domain of complex dimension 2. Later in [9], Mok proved a metric rigidity theorem which asserts that any Hermitian metric of seminegative holomorphic bisectional curvature on a compact quotient of an irreducible bounded symmetric domain of rank 2 is necessarily a constant multiple of the canonical metric. This theorem together with the theorem of Siu yields a generalization of a special case of Mostow's rigidity theorem [14]. This thesis is an exposition of Mok's results.

Rigidity Theorems on Hermitian Locally Symmetric Spaces

This set of selected papers of Klingenberg covers some of the important mathematical aspects of Riemannian Geometry, Closed Geodesics, Geometric Algebra, Classical Differential Geometry and Foundations of Geometry of Klingenberg. Of significance were his contributions to Riemannian Geometry in the Large which opened a new area in Global Riemannian Geometry. He also introduced the Hilbert manifold of closed curves of class H1 on a Riemannian manifold. In connection with his work in closed geodesics, he became interested in the properties of the geodesic flow. Classical results from dynamical systems became useful tools for the study of closed geodesics. He was also credited for drawing closer together Riemannian Geometry and Hamiltonian systems, which had developed separately since the time of H. Poincaré. Besides publishing research papers, Klingenberg also wrote a dozen books and lecture notes, among which is the important
This monograph studies the problem of characterizing canonical metrics on Hermitian locally symmetric manifolds X of non-compact/compact types in terms of curvature conditions. The proofs of these metric rigidity theorems are applied to the study of holomorphic mappings between manifolds X of the same type. Moreover, a dual version of the generalized Frankel Conjecture on characterizing compact Kähler manifolds are also formulated. Contents: Background and First Results: Historical Background and Summary of Results Fundamentals of Hermitian and Kähler Geometries Riemannian and Hermitian Symmetric Manifolds Bounded Symmetric Domains — the Classical Cases Bounded Symmetric Domains — General Theory The Hermitian Metric Rigidity Theorem for Compact Quotients The Kähler Metric Rigidity Theorem in the Semipositive Case Further Development: The Hermitian Metric Rigidity Theorem for Quotients of Finite Volume The Immersion Problem for Complex Hyperbolic Space Forms The Hermitian Metric Rigidity Theorem on Locally Homogeneous Holomorphic Vector Bundles A Rigidity Theorem for Holomorphic Mappings between Irreducible Hermitian Symmetric Manifolds of Compact Type Appendix: Semisimple Lie Algebras and Their Representations Some Theorems in Riemannian Geometry Characteristic Projective Subvarieties Associated to Hermitian Symmetric Manifolds A Dual Generalized Frankel Conjecture for Compact Kähler Manifolds of Seminegative Bisectional Curvature Keywords: Canonical Metrics; Hermitian Locally Symmetric Spaces; Curvature Conditions; Metric Rigidity Theorems; Holomorphic Maps

Arithmetic Groups and Their Generalizations

This volume is an outgrowth of the Sixth Workshop on Lie Theory and Geometry, held in the province of Cordoba, Argentina in November 2007. The representation theory and structure theory of Lie groups play a pervasive role throughout mathematics and physics. Lie groups are tightly intertwined with geometry and each stimulates developments in
the other. The aim of this volume is to bring to a larger audience the mutually beneficial interaction between Lie theorists and geometers that animated the workshop. Two prominent themes of the representation theoretic articles are Gelfand pairs and the representation theory of real reductive Lie groups. Among the more geometric articles are an exposition of major recent developments on noncompact homogeneous Einstein manifolds and aspects of inverse spectral geometry presented in settings accessible to readers new to the area.

Complex Hyperbolic Geometry

This volume contains the proceedings of the conference Local and Global Methods in Algebraic Geometry, held from May 12–15, 2016, at the University of Illinois at Chicago, in honor of Lawrence Ein's 60th birthday. The articles cover a broad range of topics in algebraic geometry and related fields, including birational geometry and moduli theory, analytic and positive characteristic methods, geometry of surfaces, singularity theory, hyper-Kähler geometry, rational points, and rational curves.

Mathematical Reviews

The papers contained in this book address problems in one and several complex variables. The main theme is the extension of geometric function theory methods and theorems to several complex variables. The papers present various results on the growth of mappings in various classes as well as observations about the boundary behavior of mappings, via developing and using some semi group methods.

Readership: Graduate students, researchers and academics in mathematics. Keywords: Geometric Function Theory; Several Complex Variables; Function Theory; Holomorphic Mappings; Subriemannian Geometry; Riemann Manifolds; Finsler Manifolds; Loewner Chains. Key Features: Written to be understood and to be used by a wide audience. Contains survey papers on important areas of research mathematics. Written by mathematicians of international stature.

Geometric Function Theory in Several Complex Variables

The geometry of complex hyperbolic space has not, so far, been given a
Where To Download Metric Rigidity Theorems On Hermitian Locally Symmetric Manifolds

comprehensive treatment in the literature. This book seeks to address this by providing an overview of this particularly rich area of research, and is largely motivated by the wide applications in other areas of mathematics and physics.

Contemporary Trends In Algebraic Geometry And Algebraic Topology

Geometric Topology can be defined to be the investigation of global properties of a further structure (e.g. differentiable, Riemannian, complex, algebraic etc.) one can impose on a topological manifold. At the C.I.M.E. session in Montecatini, in 1990, three courses of lectures were given on recent developments in this subject which is nowadays emerging as one of the most fascinating and promising fields of contemporary mathematics. The notes of these courses are collected in this volume and can be described as: 1) the geometry and the rigidity of discrete subgroups in Lie groups especially in the case of lattices in semi-simple groups; 2) the study of the critical points of the distance function and its application to the understanding of the topology of Riemannian manifolds; 3) the theory of moduli space of instantons as a tool for studying the geometry of low-dimensional manifolds. CONTENTS: J. Cheeger: Critical Points of Distance Functions and Applications to Geometry. M. Gromov, P. Pansu, Rigidity of Lattices: An Introduction. Chr. Okonek: Instanton Invariants and Algebraic Surfaces.

Foliation Theory in Algebraic Geometry

The KSCV Symposium, the Korean Conference on Several Complex Variables, started in 1997 in an effort to promote the study of complex analysis and geometry. Since then, the conference met semi-regularly for about 10 years and then settled on being held biannually. The sixth and tenth conferences were held in 2002 and 2014 as satellite conferences to the Beijing International Congress of Mathematicians (ICM) and the Seoul ICM, respectively. The purpose of the KSCV Symposium is to organize the research talks of many leading scholars in the world, to provide an opportunity for communication, and to promote new researchers in this field.

Complex Geometric Analysis in Pohang

The Wei-Liang Chow and Kuo-Tsai Chen Memorial Conference was proposed and held by Prof S S Chern in Nankai Institute of Mathematics. It was devoted to memorializing those two outstanding and original Chinese mathematicians who had made significant contributions to algebraic geometry and algebraic topology, respectively. It also provided a forum for leading mathematicians to expound and discuss their views on new ideas in these fields, as well as trends in 21st Century mathematics. About 100 mathematicians participated in the conference,
Where To Download Metric Rigidity Theorems On Hermitian Locally Symmetric Manifolds

including Sir Michael Atiyah, Jacob Palis, Phillip Griffiths, David Eisenbud, Philippe Tondeur, Y ujiro Kawamata, Tian Gang, etc. This invaluable volume contains the selected papers presented at the conference. The topics include canonical maps of Gorenstein 3-folds, fundamental groups of algebraic curves, Chen's interated integrals, algebraic fiber spaces, and others.

New Developments in Lie Theory and Geometry

The fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field. The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. M ok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.

Modern Methods in Complex Analysis

The papers contained in this book address problems in one and several complex variables. The main theme is the extension of geometric function theory methods and theorems to several complex variables. The papers present various results on the growth of mappings in various classes as well as observations about the boundary behavior of mappings, via developing and using some semi group methods.

Boundary Value Problems for Analytic Functions

Readership: Mathematicians, physicists and engineers.

Combinatorial Algebraic Geometry

This monograph studies the problem of characterizing canonical metrics on Hermitian locally symmetric manifolds X of non-compact/compact types in terms of curvature conditions. The proofs of these metric rigidity theorems are applied to the study of holomorphic mappings between manifolds X of the same type. Moreover, a dual version of the generalized Frankel Conjecture on characterizing compact Kähler manifolds are also formulated.
Where To Download Metric Rigidity Theorems On Hermitian Locally Symmetric Manifolds

Aspects Of Complex Analysis, Differential Geometry, Mathematical Physics And Applications - Proceedings Of The Fourth International Workshop On Complex Structures And Vector Fields

The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

Methods of Nonconvex Analysis

This volume includes 28 chapters by authors who are leading researchers of the world describing many of the up-to-date aspects in the field of several complex variables (SCV). These contributions are based upon their presentations at the 10th Korean Conference on Several Complex Variables (KSCV10), held as a satellite conference to the International Congress of Mathematicians (ICM) 2014 in Seoul, Korea. SCV has been the term for multidimensional complex analysis, one of the central research areas in mathematics. Studies over time have revealed a variety of rich, intriguing, new knowledge in complex analysis and geometry of analytic spaces and holomorphic functions which were "hidden" in the case of complex dimension one. These new theories have significant intersections with algebraic geometry, differential geometry, partial differential equations, dynamics, functional analysis and operator theory, and sheaves and cohomology, as well as the traditional analysis of holomorphic functions in all dimensions. This book is suitable for a broad audience of mathematicians at and above the beginning graduate-student level. Many chapters pose open-ended problems for further research, and one in particular is devoted to problems for future investigations.

Complex Analysis and Geometry

This volume contains selected papers of Dr Morikazu Toda. The papers are arranged in chronological order of publishing dates. Among Dr Toda's many contributions, his works on liquids and nonlinear lattice dynamics should be mentioned. The one-dimensional lattice where nearest neighboring particles interact through an exponential potential is called the Toda lattice which is a miracle and indeed a jewel in theoretical physics. The papers in this volume can be grouped into five subjects: statistical mechanics, theory of liquids and solutions, lattice dynamics, Toda lattice and soliton theory and its applications.

Compactifications of Symmetric and Locally Symmetric Spaces

Combinatorics and Algebraic Geometry have enjoyed a fruitful interplay since the nineteenth century. Classical interactions include invariant
theory, theta functions and enumerative geometry. The aim of this volume is to introduce recent developments in combinatorial algebraic geometry and to approach algebraic geometry with a view towards applications, such as tensor calculus and algebraic statistics. A common theme is the study of algebraic varieties endowed with a rich combinatorial structure. Relevant techniques include polyhedral geometry, free resolutions, multilinear algebra, projective duality and compactifications.

Selected Papers of Morikazu Toda

Metrical and Dynamical Aspects in Complex Analysis

Introduction to Compact Lie Groups

Bounded Symmetric Domains In Banach Spaces

In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as \mathbf{Z} or $\text{SL}(n,\mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA. Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of \mathbb{Q} and \mathbb{R}-arithmetic groups over number fields; Global fields and \mathbb{S}-arithmetic groups over function fields; Finiteness properties of arithmetic and \mathbb{S}-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; K-\mathbb{R}-groups of rings of integers and K-\mathbb{S}-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free
groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come. (AMSIP/43.)

Geometric Topology: Recent Developments

This volume comprises the proceedings of a conference on the geometric analysis of several complex variables held at POSTECH in June 1997. The conference was attended by scientists and students from around the globe. Each of the five plenary speakers at the conference gave a short course on a topic of current interest in the field. The lecture write-ups contain cogent and accessible information intended for a broad audience. The volume also includes a tutorial in several complex variables given by Kim and Krantz at the conference. This tutorial is geared toward helping the novice to understand the rest of the material in the book. The bibliographies of the papers give students and young mathematicians a valuable resource for future learning on the topic. This book provides a substantial overview on areas of current activity. Required background for understanding the text is a solid undergraduate education in mathematics and familiarity with first-year graduate studies in real and complex analysis. Some exposure to geometry would be helpful. The book is also suitable for use as a supplemental course text.

The Ricci Flow: Techniques and Applications

The articles in these two volumes arose from papers given at the 1991 International Symposium on Geometric Group Theory, and they represent some of the latest thinking in this area. Many of the world's leading figures in this field attended the conference, and their contributions cover a wide diversity of topics. This second volume contains solely a ground breaking paper by Gromov, which provides a fascinating look at finitely generated groups. For anyone whose interest lies in the interplay between groups and geometry, these books will be an essential addition to their library.

Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics

This timely book exposes succinctly recent advances in the geometric and analytic theory of bounded symmetric domains. A unique feature is the unified treatment of both finite and infinite dimensional...
symmetric domains, using Jordan theory in tandem with Lie theory. The highlights include a generalized Riemann mapping theorem, which realizes a bounded symmetric domain as the open unit ball of a complex Banach space with a Jordan structure. Far-reaching applications of this realization in complex geometry and function theory are discussed. This monograph is intended as a convenient reference for researchers and graduate students in geometric analysis, infinite dimensional holomorphy as well as functional analysis and operator theory.

Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds

Since the first ICM was held in Zürich in 1897, it has become the pinnacle of mathematical gatherings. It aims at giving an overview of the current state of different branches of mathematics and its applications as well as an insight into the treatment of special problems of exceptional importance. The proceedings of the ICMs have provided a rich chronology of mathematical development in all its branches and a unique documentation of contemporary research. They form an indispensable part of every mathematical library. The Proceedings of the International Congress of Mathematicians 1994, held in Zürich from August 3rd to 11th, 1994, are published in two volumes. Volume I contains an account of the organization of the Congress, the list of ordinary members, the reports on the work of the Fields Medalists and the Nevanlinna Prize Winner, the plenary one-hour addresses, and the invited addresses presented at Section Meetings 1 - 6. Volume II contains the invited address for Section Meetings 7 - 19. A complete author index is included in both volumes. 'the content of these impressive two volumes sheds a certain light on the present state of mathematical sciences and anybody doing research in mathematics should look carefully at these Proceedings. For young people beginning research, this is even more important, so these are a must for any serious mathematics library. The graphical presentation is, as always with Birkhäuser, excellent.' (Revue Roumaine de Mathématiques pures et Appliquées)

Modern Methods in Complex Analysis (AM-137), Volume 137

This book is a written-up and expanded version of eight lectures on the Hodge theory of projective manifolds. It assumes very little background and aims at describing how the theory becomes progressively richer and more beautiful as one specializes from Riemannian, to Kähler, to complex projective manifolds. Though the proof of the Hodge Theorem is omitted, its consequences OCo topological, geometrical and algebraic OCo are discussed at some length. The special properties of complex projective manifolds constitute an important body of knowledge and readers are guided through it with the help of selected exercises. Despite starting with very few prerequisites, the concluding chapter
works out, in the meaningful special case of surfaces, the proof of a special property of maps between complex projective manifolds, which was discovered only quite recently.

The Ricci Flow: Techniques and Applications

Geometric Function Theory in Several Complex Variables

There are two approaches to compact lie groups: by computation as matrices or theoretically as manifolds with a group structure. The great appeal of this book is the blending of these two approaches. The theoretical results are illustrated by computations and the theory provides a commentary on the computational work. Indeed, there are extensive computations of the structure and representation theory for the classical groups $SU(n)$, $SO(n)$ and $Sp(n)$. A second exciting feature is that the differential geometry of a compact Lie group, both the classical curvature studies and the more recent heat equation methods, are treated. A large number of formulas for the connection and curvature are conveniently gathered together. This book provides an excellent text for a first course in compact Lie groups. Request Inspection Copy

A Concise Introduction to the Theory of Integration

This volume constitutes the proceedings of a workshop whose main purpose was to exchange information on current topics in complex analysis, differential geometry, mathematical physics and applications, and to group aspects of new mathematics.

Geometric Group Theory: Volume 2

Readership: Mathematicians. Keywords: Cauchy Type Integral; Riemann Boundary Value Problem; Hilbert Boundary Value Problem; Index; Singular Integral Equation; Plemelj Formula; Characteristic Function; Standard Function; Noether Theorem; Extended Residue Theorem “The book is self-contained and clearly written ... It can well be used for advanced courses in complex analysis and for seminars, and is readable by graduate students themselves.” Mathematics Abstracts

Copyright code: 07aa9ff95f0f915294bfd1f3cdec9557